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An algorithm for calculating the boiling point pressure at a chosen temperature and composition 
was used for computing liquid-liquid equilibrium. A lot of attention is paid to the determination 
of the first approximation which is specified in terms of the conditions of thermodynamic stability. 
The conditions of thermodynamic stability make as well possible to localize the lower and upper 
critical end points (LCEP and UCEP). The Redlich-Kwong-Soave equation of state was applied 
in calculations, and it was found out that this equation with zero interaction parameters predicts 
well the lower and upper critical end temperatures in the systems methane-n-hexane, ethane-n­
-eicosane and ethane-n-docosane. 

The computation of liquid-liquid equilibrium (LLE) stems mostly from the relations 
which thermodynamically describe the given system in terms of the Gibbs energy, 
as e.g., the Redlich-Kister, NRTL, UNIQUAC, or modified Wilson equationsl - 3 • 

An advantage of this procedure is a simple application both in correlating the data 
and in predicting in chemical-engineering practice. On the other hand this method 
is rather complicated when describing systems in a wider temperature and pressure 
range. Insuperable difficulties arise in the vicinity of the critical point of some of 
components where the effect of pressure plays a significant role. 

Equations of state have recently been in common use for describing vapour­
-liquid equilibrium and begun more strongly compete with the classical description 
by means of activity coefficients. When correlating vapour-liquid equilibrium under 
higher pressures especially in mixtures of nonpolar substances, this method is quite 
usual4 • Lately, equations of state have begun to be used even for the description 
of liquid-liquid equilibriums- 1o• A disadvantage of describing the systems in terms 
of equations of state is a more complicated calculation of compositions of equilibrium 
phases and, in case of LLE, in addition, a more difficult determination of the first 
approximation which is necessary for numerical calculation of equilibrium. 

It is shown in this work that, when calculating the composition of coexisting phases 
in case of LLE, it is possible to apply the previously proposed algorithmll for 
calculating the boiling point pressure in terms of which it is also possible to determine 
very accurately the first approximation. It is as well shown that by means of this 
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algorithm one can accurately localize in binary systems the lower and upper critical 
end point temperatures in which the number of phases changes. 

When calculating LLE in' muIticomponent Ilystems, we can proceed in a similar 
way to that proposed for calculating LLE on the basis of relations for activity 
coefficients. Then as a basis of calculation serve the values obtained for the hetero­
geneous binary system, and by an appropriate rearrangement of set of equations (3), 
it is possible to obtain the optimum first approximation for calculating LLE in an 
N-component system. The details may be found in cited work. 

/~.~~ 

,~~~ "~ ,- /~'tt'(4 
To calculate vapour-liquid equilibrium, an algorithm was developedll for solving 
the set of equations which follows from the equilibrium conditions in N-component 
system 

peT, dL , Xl> XZ • ... , XN-I) = peT, d', Yl> Yz, ... , YN-r) , 

li(T, dL, Xl, Xz, ... , XN-t) = li(T, d', Yl> Yz, ... , YN-r) , 

i = 1,2, ... , N. (1) 

In these equations, T, P, dL , dg denotes the temperature, pressure, and densities of 
equilibrium phases, respectively, Ii the fugacity of component i, Xl> Xz, ... , XN-I 

the composition of the liquid phase and YI' Yz, ... , YN-I the composition of the gas 
phase. 

If the temperature and composition of the liquid phase are given, the solution 
of set of equations (1) is referred to as the boiling point pressure calculation; when 
the values of temperature and composition of the vapour phase are given, on the 
contrary, as the dew point pressure calculation. It is evident that both the problems 
can be solved by a single program, and the type of calculation is chosen only by the 
choice of the respective first approximation. 

When calculating LLE, we as well stem from the equality of pressures and fugaci­
ties of the components in coexisting phases 

peT. d el) (I) (1) (1) ) _ peT. d(Z) (Z) (Z) (Z) ) 
, ,Xl' X z , ... , XN - I - , ,Xl' X z , ... , XN- l , 

I (T. d (1) (1) (1) (1) ) - I (T. d(Z) (Z) (Z) (Z) ) 
i' ,Xl ,Xz , ... ,XN- l - i' ,Xl ,Xz ,,,,,XN- l , 

i = 1,2, ... , N . (2) 

This set is, with the exception of the denotation of mole fractions of components 
and phases, identical with set of equations (1). Consequently, if we choose tempera-

d ' , f h ( T. (I) (1) (1) ) h ture an compOSItIOn 0 any p ase e.g., ,Xl' X z , ... , XN- l , we can use t e 
program for calculating vapour-liquid equilibrium without any rearrangements. 
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In the calculation itself, the Newton method is applied, and from set of equations 
(2) we get after small rearrangement 

N-l 
(oP/od)(1) A.d(l) - (oP/od)C2) A.d(2) - I (oP/OXj)(2) A.x~2) = 

j=l 

N-l 
= p(2) _ p(1) _ I (oP/OXj)(l) A.x~l) + [(OP/OT)<2) - (oP/oT)(1)] A.T, 

j=1 

N-l 
(Ofi/od)(1) A.d(1) - (ofJod)(2) A.d(2) - I (ofJOXj)(2) A.x~2) = 

j=1 
N-l . 

= ff2) - f[I) - I (ofJoxj)<l) A.x~l) + [(OfJoT)(2) - (ofdoT)(1)] A.T, 
j=l 

i = 1,2, .•. , N. (3) 

For a specified temperature and composition of some of phases (i.e., e.g., A.T = 0, 
A.X\l) = A.x~1) = ... = A.XU~l = 0), we get a set of(N + 1) equations for unknowns 
A.d(1), A.d(2), A.x~2), A.x~2), ... , A.X~21' After determining the coefficients in set of 
equations (3) and these increments, we obtain the next approximation of values of 
unknowns: 

(4) 

As soon as the increments, or better the sum of their squares decreases under a chosen 
value, the calculation for the given temperature and composition of the first phase 
is finished. 

If we wish to carry out the calculation for another temperature Tnew and composi­
tion x1~~ew' we can again stem from set of equations (3), the right-hand sides con­
taining in addition the contributions with A.T and A.xi1): 

A. T = Tnew - T, 
A (1) _ (1) _ (1) . - 1 2 N - 1 Ll.Xj - xj,new Xj , ) - , , •.. , . (5) 

In terms of a new solution of set of equations (3) at a given equilibrium point we 
obtain A.d(1), A.d(2), A.x~2), j = 1,2, ... , N - 1 which will be used according to 
Eqs (4) to estimate the first approximation of densities and composition of the second 
phase at the temperature Tnew and composition x~~Jew' Further details on calculation 
and the corresponding relations for calculating the derivatives of pressure and fuga­
city of a component with respect to independent variables (temperature, density, and 
composition) for the Redlich-K wong-Soave equation are given elsewherell . 

Considering that the Newton method is used twice in the solution, viz. for the 
first time for solving the equilibrium conditions itself and for the second time for 
determining the next approximation of densities and composition of the second 
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phase, this procedure was denoted as the DAN method (Double Application of the 
Newton-Raphson Method). 

As it has been shown previously 11 , the calculation converges (in case of a good 
first approximation) regardless of the fact whether the phase whose composition 
was chosen, is thermodynamically stable or not. However, if the phase whose com­
position is sought is thermodynamically unstable, then the calculation converges 
only in isolated cases. The reason is the fact that the determinant of set of equations 
(3) is proportional to the determinant of thermodynamic stability of the phase whose 
composition is sought. This determinant changes its sign when passing from the 
metastable to labile region, and is equal to zero on the spinodal surface. Conse­
quently the contributions in the vicinity of spinodal surface acquire very high values. 
If we get into the region where the phase whose composition is sought stops being 
thermodynamically stable, we usually obtain the so-called trivial solution (d(l) = 

= d(Z), x?) = x~Z») or the calculation oscillates. 

Determination of the First Approximation and the Calculation Itself 

The key point in calculating LLE is the determination of the first approximation. 
For this purpose, the employment of the conditions of thermodynamic stability has 
appeared to be the most optimum for they answer generally the question of the 
phase splitting of a system. The conditions of thermodynamic stability of a phase 
can be expressed i)1 different ways. For the sake of lucidity and for the purpose of 
expedience, we limit further to binary systems only. 

In a binary system under constant temperature and pressure, the separation into 
two phases necessarily takes place as far as holds 1z - 14 

(6) 

where /li is the chemical potential of the first component and G the molar Gibbs 
energy of the respective phase. The course of Gll (= [aZ( GjRT)/axi]T,p) as a func­
tion of Xl for a homogeneous and heterogeneous system is given in Fig. 1a. 

For the independent variables temperature T, molar volume V (or molar density 
d = Ij V) and composition, the conditions of thermodynamic stability are usually 
formulated in terms of the molar Helmholtz energy A (refs1Z - 14). For the labile 
region then holds 

D = 1.8ZAjavZ aZAjiwax l / = (aZAjavZ) (a 2Aja 2)_ 
A ;aZAjaVCXI a2Ajaxi Xl 

- (a 2 Ajavax l )2 = d2 . GIl . (aPjadh,xl < O. (7) 

Derivatives of the Helmholtz energy can be expressed by means of the derivatives 
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of pressure and fugacities 

and consequently 

(172 Ajav2h.x = -(apjavh,x = d2(apjadh.x, 

(17 2 AjavaXl) = -(ap/aXlh.v = -(ap/axlh.d· 

From the definition of the component fugacity, it is as well possible to obtain 

(17 2 Ajaxih.v = (17 2 A/axih,d = RT[(a In!ljax1h.d -

- (a In!2/aXlh.d] . 

(8a) 

(8b) 

(8e) 

(8d) 

The determinant DA can be expressed in terms of these relations by the equation 

DA = RTd 2(apjadh,x [(a In!IJaXlh,d - (a In!2jaXth,d] -

- (aPjaXI);.d . (9) 

In previous paper 11 , the determinant of thermodynamic stability was defined 

1-- b 

;}2r; 
L 

dX~ p, 

n 

°o~----~==~==~-----~ 
X1 

FIG. I 

Course of dependences o2(G/RT)/oxr = Gil and P on xl andYI for homogeneous (ex) and hetero­
geneous (P) system (in the liquid phase). L labile region (in this region a hypothetical course 
is encountered marked by dashed line) 
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by the relation 

(10) 

It is possible to show that 

(11) 

An advantage of Eqs (9) and (10) is the fact that only the coefficients needed to solve 
set of equations (3) appear in them, and so the thermodynamic stability of both 
phases is easy to verify. 

In case of a binary system, the possible splitting into two phases or the existence 
of a labile region can be determined also from the calculated course of the boiling 
point curve (or even the dew point curve). From the differential conditions of equi­
librium holds l2 - 14 

(iJP!iJXlh, .. = (YI - Xl) (iJ/1l.!iJXlh,P!{(l - Xl) [YI(VI - V}) + 
+ h(V! - VLm = (12a) 

= (YI - xI)RT. Gll![Yt(Vl - Vr) + yiV! - Vf)] , (12b) 

where the index a points out that the pressure change with composition along the 
equilibrium curve (in this case the boiling point curve) is concerned. With regard to 
the course of (iJ/1l.!iJXI)T,P = x2RT. Gll (see Fig. la) and considering that the 
coexisting phases have in equilibrium identical pressure, the dependence of pressure 
on composition for unstable phase in heterogeneous region has an S-shaped course 
(outlined in Fig. Ib). In the labile region, if YI > Xl and Vii> ViL (i = 1,2), the 
pressure diminishes with increasing concentration of component 1. On the basis 
of Fig. 1 b, we can determine very accurately the first approximation of composition 
(and density) of phases for calculating LLE (they correspond approximately to the 
points A, D in Fig. 1 b). 

During the calculation itself we proceeded in the following way: First the vapour­
-liquid equilibrium for a chosen temperature and composition Xl' Xl + AXl> Xl + 
2AXI' Xl + 3Axl' ... was calculated. In the course of calculation, the fulfilment of 
the conditions of thermodynamic stability was checked by evaluating the determinant 
Da (Eq. (10» in both phases. Providing that the labile region was found out, the 
calculation was repeated with a lower value of Ax I to obtain a more accurate first 
approximation which was determined by choosing two points A, D from both sides 
of the labile region which yielded approximately the same pressure (Fig. 1 b). 

After determining the first approximation according to the foregoing point, i.e. 
on establishing d(l), d(2l, X\l), X\2), the solution of set of equations (3) followed. 
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Having been solved, it was possible; 

1) to calculate the entire isotherm for new values X(l) = X(l) + Ax X{l) + l,new 1 1, 1 

2AX1.' X~l) + 3Ax1., etc., 

2) to calculate LLE at constant composition for temperatures Tnew = T + AT, 
T + 2AT, T + 3AT, etc., 

3) to calculate LLE for new values of temperature and composition. 

On localizing the lower critical end point (LCEP) we proceeded similarly to that 
when determining the first approximation for calculation of LLE. The procedure is 
evident from Fig. 2 representing the system methane-n-hexane. At the temperature 
Tl = 183 K, all the chosen compositions on the boiling point curve satisfy the condi­
tion of thermodynamic stability and the equilibrium pressure is a monotonous 
(increasing) function of the liquid phase composition. At the temperature T = 183·5 K 
in the concentration range Xl = 0·935 to Xl = 0'95, the conditions of thermodynamic 
stability are not fulfilled, and the calculated equilibrium pressure exhibits an S-shaped 
course. Consequently the temperature corresponding to LCEP must lie between 
these temperatures. By halving the increments ATand Ax1., the LCEP can be localized 

_______ .-.-~.--- f 
-'-l 

1 

p'r·'::::" /a/ 
LCE~':.~ • .,b /a 

I .--/ 

3'56l~~. ~~, ___ " ____ _ 
0·9 --1'0 

XC.H" 

FIG. 2 

Dependence of P (MPa) on xCH, for tne 
system CH4-n-hexane in the vicinity of 
LCEP at the temperatures: a 183, b 183·1, 
c 183'15, d 183'2, e 183-25,f183'5 K 
~-- ----_._----------

p 

l...",:::=---r, 
x, 

FIG. 3 

Schematic course of isotherms in the system 
CH4 -n-hexane 
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very accurately. At the point corresponding to LCEP, the homogeneous liquid 
phase, which is in equilibrium with the vapour phase, begins to separate into two 
liquid phases on increasing temperature. In a similar way it is possible to determine 
also the position of the upper critical end point (UCEP) which occurs in these 
systems. 

Application of the LLE Calculation to the Mixtures Methane-n-Hexane, 
Ethane-n-Eicosane and Ethane-n-Docosane 

The method proposed was applied to the above-mentioned systems which make 
great demands on the calculation for the heterogeneous region of corresponding 
LLE is very small and occurs in the vicinity of critical point of more volatile 
substance. The used parameters of pure substances are given in Table I. 

The behaviour of these systems is schematically plotted in Fig. 3 and is discussed 
in detail in literature15 - 22. At a temperature lower than LCEP, the isotherm shows 
a common course corresponding to the homogeneous liquid phase. At a temperature 
pertaining to LCEP, an inflex with zero slope appears on the boiling point curve, 
corresponding to the conditions Gll = 0, oGlljoxl = 0 for the critical point. 
At a higher temperature (the isotherms T3 , T4 ), the liquid phase already separates 
to form two phases to which pertains the critical point C2 • At the temperature T4 , 

which is higher than the critical temperature of the more volatile substance, there 
are two critical points C1 and C2 in the system. On increasing temperature, the critical 
point C1 is shifted to C2 as far as at a temperature Ts the heterogeneous region, 
to which pertains the critical point Cl> vanishes. An inflex point with zero slope 
corresponding to VCEP appears on the isotherm T5 • Ifwe stem from the temperature 
T6 and gradually diminish temperature, it is possible to find up VCEP as a beginning 
of thermodynamic instability on the dew point curve. 

TABLE I 

Used parameters of pure substances23 

Substance Tc' K Pc, MPa 

Methane 190·54 4-6030 0·0115 
Ethane 305-43 4·8798 0·091 
n-Hexane 507-43 3·0112 0·2957 
n-Octadecane 745·04 1·2128 0·7895 
n-Nonadecane 756·0 1-120 0·8271 
n-Eicosane 767·04 1-1165 0·9065 
n-Docosane 786.824 1.09324 0.95725 
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In Fig. 4, three isotherms are given as calculated in the methane-n-hexane system 
on the basis of the Redlich-Kwong-Soave equation12. For a comparison we re­
produce as well the data found experimentally by Lin and coworkers 18 . Considering 
that the zero interaction parameters k~j = k~j = 0 were used for the calculation, 
the obtained agreement can be considered as very good. Whereas the isotherm 
T = 193·15 K is as given by Lin and coworkers 18 still below the temperature of 
UCEP, according to the equation of state used it is already above UCEP. 

Four isotherms are given in Fig. 5 for the system methane-n-hexane from the 
vicinity of UCEP. At the temperature T = 192 K, the heterogeneous region with 
the critical point C1 is clearly developed and on intersecting the curve of "dew 
points" at the points A, B (composition of the third coexisting phase is not depicted 
in the figure), the curve delimiting the heterogeneoLls region goes on through the 
metastable parts /3'. The dew point curve d which has a typical S-shaped course 
between the points A and B, is quite analogous to the course of the boiling point 
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Comparison of experimental (solid line) 
and calculated (dashed line) isotherms in the 
system CH4-n-hexane at the temperatures: 
a 186'23, b 190'5, c 193·15 K; pressure 
inMPa 

1·0 

P, 

0'9999 

FIG. 5 

Course of "dew point curves" in the vicinity 
of VCEP for the system CH4 -n-hexane at 
the temperatures: a 193'15, b 192'60, c 192'55 
(shows in a certain range thermodynamic 
instability), d 192 K (the course in labile 
region is denoted by d'). Curves delimiting 
heterogeneous region with the critical point 
C 1: 0: 193·15 K (metastable heterogeneous 
region), p 192 K stable heterogeneous region 
(metastable parts denoted by p') 

Collection Czechoslovak Chern. Commun. [Vol. 511 [19861 



Liquid-Liquid Equilibrium 1391 

curve above LCEP. At the temperature T = 193·15 K which is higher than the 
predicted temperature of UCEP (Table II), the dew point curve is monotonously 
decreasing, and the heterogeneous region (metastable curve and with critical point 
C1) occurs below this curve. The curve b, c correspond to the dew point curves 
close above (b) and below (c) the temperature of UCEP. On the isotherm T = 
= 192·55 K, points were still found which exhibit thermodynamic instability. 

Very good agreement of both the critical temperatures follows from the comparison 
of the calculated and experimental data especially on comparing these results with 
the classical predictions of critical temperature in terms of the relations for activity 
coefficients l •3 • But there exists worse agreement in obtained compositions. This 
shortage may be apparently impute partly to the mixing rules used and mainly to 
the simplest possible version of describing the P-V-T behaviour, viz. in terms of 
the cubic equation of state. 

The calculated and experimental values of LCEP and UCEP in the systems 
ethane-eicosane and ethane-n-docosane are given in Table II. All these values 
were obtained by means of the Redlich-Kwong-Soave equation with zero inter­
action parameters kij. Calculations were as well carried out for the systems ethane­
-n-C18 and ethane-n-CI9 which as well exhibit limited miscibility in the liquid phase. 
This limited miscibility, however, was not found out on using the Redlich-Kwong­
-Soave equation of state with zero interaction parameters. 

TABLE II 

Experimental and calculated parameters LCEP and UCEP 

System Point T,K P,MPa xl Ref. 

Methane-n-hexane LCEP expo 182'46 3-4149 0'9286 18 
calc. 183'12 3'5760 0'9429 

UCEP expo 195-91 5'205 0'9976 18 
calc. 192'58 4'826 0'9989 

Ethane-n-C2o LCEP expo 306'89 4'9535 0'9705 19 
calc. 304'64 4'7732 0'9919 

UCEP expo 309'78 5'2870 0'9974 19 
calc. 306'90 5'0039 0'99975 

Ethane-n-C22 LCEP expo 300'72 4'388 0'963 20 
calc. 301'805 4'5127 0'9901 

UCEP expo 307'98 5·145 0'9991 20 
calc. 306'31 4'9537 0'99989 
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